The three insulin response sequences in the glucose-6-phosphatase catalytic subunit gene promoter are functionally distinct.

نویسندگان

  • Beth T Vander Kooi
  • Ryan S Streeper
  • Christina A Svitek
  • James K Oeser
  • David R Powell
  • Richard M O'Brien
چکیده

Glucose-6-phosphatase catalyzes the terminal step in the gluconeogenic and glycogenolytic pathways. In HepG2 cells, the maximum repression of basal glucose-6-phosphatase catalytic subunit (G6Pase) gene transcription by insulin requires two distinct promoter regions, designated A (located between -231 and -199) and B (located between -198 and -159), that together form an insulin response unit. Region A binds hepatocyte nuclear factor-1, which acts as an accessory factor to enhance the effect of insulin, mediated through region B, on G6Pase gene transcription. We have previously shown that region B binds the transcriptional activator FKHR (FOXO1a) in vitro. Chromatin immunoprecipitation assays demonstrate that FKHR also binds the G6Pase promoter in situ and that insulin inhibits this binding. Region B contains three insulin response sequences (IRSs), designated IRS 1, 2, and 3, that share the core sequence T(G/A)TTTT. However, detailed analyses reveal that these three G6Pase IRSs are functionally distinct. Thus, FKHR binds IRS 1 with high affinity and IRS 2 with low affinity but it does not bind IRS 3. Moreover, in the context of the G6Pase promoter, IRS 1 and 2, but not IRS 3, are required for the insulin response. Surprisingly, IRS 3, as well as IRS 1 and IRS 2, can each confer an inhibitory effect of insulin on the expression of a heterologous fusion gene, indicating that, in this context, a transcription factor other than FKHR, or its orthologs, can also mediate an insulin response through the T(G/A)TTTT motif.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insulin-regulated gene expression.

Insulin regulates the expression of more than 150 genes, indicating that this is a major action of this hormone. At least eight distinct consensus insulin response sequence (IRSs) have been defined through which insulin can regulate gene transcription. These include the serum response element, the activator protein 1 ('AP-1') motif, the Ets motif, the E-box motif and the thyroid transcription f...

متن کامل

The promoter for the gene encoding the catalytic subunit of rat glucose-6-phosphatase contains two distinct glucose-responsive regions.

Glucose homeostasis requires the proper expression and regulation of the catalytic subunit of glucose-6-phosphatase (G-6-Pase), which hydrolyzes glucose 6-phosphate to glucose in glucose-producing tissues. Glucose induces the expression of G-6-Pase at the transcriptional and posttranscriptional levels by unknown mechanisms. To better understand this metabolic regulation, we mapped the cis-regul...

متن کامل

The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements.

Glucose-6-phosphatase catalyzes the final step in the gluconeogenic and glycogenolytic pathways. Glucocorticoids stimulate glucose-6-phosphatase catalytic subunit (G6Pase) gene transcription and studies performed in H4IIE hepatoma cells demonstrate the presence of a glucocorticoid response unit (GRU) in the proximal G6Pase promoter. In vitro deoxyribonuclease I footprinting analyses show that t...

متن کامل

Transcriptional regulation of glucose-6-phosphatase catalytic subunit promoter by insulin and glucose in the carnivorous fish, Sparus aurata.

Increase in glucose-6-phosphatase catalytic subunit (G6Pase, G6pc) transcription enhances hepatic glucose production in non-insulin-dependent diabetes mellitus (NIDDM). The fact that carnivorous fish is an alternative model to study NIDDM led us to clone and characterise the first G6pc promoter region reported for fish and non-mammalian animals. The 5'-flanking region of G6pc from gilthead sea ...

متن کامل

The proximal islet-specific glucose-6-phosphatase catalytic subunit-related protein autoantigen promoter is sufficient to initiate but not maintain transgene expression in mouse islets in vivo.

We have previously reported the discovery of an islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) that is predominantly expressed in islet beta-cells. IGRP has recently been identified as a major autoantigen in a mouse model of type 1 diabetes. The analysis of IGRP-chloramphenicol acetyltransferase (CAT) fusion gene expression in transiently transfected islet-derived...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 14  شماره 

صفحات  -

تاریخ انتشار 2003